Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining
نویسندگان
چکیده
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.
منابع مشابه
Quantification of diverse subcellular immunohistochemical markers with clinicobiological relevancies: validation of a new computer-assisted image analysis procedure.
Tissue microarray technology and immunohistochemical techniques have become a routine and indispensable tool for current anatomical pathology diagnosis. However, manual quantification by eye is relatively slow and subjective, and the use of digital image analysis software to extract information of immunostained specimens is an area of ongoing research, especially when the immunohistochemical si...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملEffects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis
BACKGROUND Recent technical advances in digital image capture and analysis greatly improve the measurement of protein expression in tissues. Breast cancer biomarkers provide a unique opportunity to utilize digital image analysis to evaluate sources of variability that are caused by the tissue preparation, in particular the decalcification treatment associated with the analysis of bone metastati...
متن کاملA method for normalizing pathology images to improve feature extraction for quantitative pathology.
PURPOSE With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining con...
متن کاملComputing of the Burnt Forest Regions Area Using Digital Image Processing
At present, there is no conventional scientific method to evaluate the area of the burnt regions of forests and in this field, the related organizations use different methods and variables. Also, the speed in performing the processes of area computing and damage evaluation, especially in the extensive damaged forest regions is very slow; consequently, the expression of results takes more ti...
متن کامل